

Economic consequences of natural catastrophes and the role of (re)insurance

Observatorio de Catástrofes Naturales 20 Noviembre 2017 Andrés Ruiz & Joachim Mathe

Fundación **AON** España

Image: Shutterstock.com

Climate change and its consequences is Munich Re's core business

- 1. Economic consequences of natural catastrophes
- 2. Emerging economies are particularly at risk
- **3.** Hurricanes 2017: Harvey, Irma, Maria
- 4. Role of the (re)insurance industry

Economic consequences of natural catastrophes

Insurers help to limit the losses, both before and after the catastrophe

	Oddoffo				
e	Insurers provide support for risk-mitigation measures	Insurers make funds available and thereby limit indirect losses			
Insurers' ro	 Prevention, e.g. through policy terms and conditions or because insurance premiums give a price to the respective risk and therefore create incentives Knowledge and expertise, e.g. risk information 	 Prompt reconstruction enables the rapid resumption of production Public and private debt is limited so that no additional obstacles to growth arise 			
	Ex-ante	Ex-post			
iCat effects		Direct losses Human losses and destroyed property			

Na

Catastrophe occurs

Short-term effect

Effect on GDP level and business cycle

Long-term effect Influence on long-term growth

5

time.

Natural catastrophes affect the economy through direct losses

Direct losses

- Damage to physical capital and resources
- Death and diseases

Not directly evident from GDP development

Munich RE

Indirect effects on the economy are also relevant

Indirect losses

- Any effect not caused directly by the natural catastrophe, but by its direct losses
- Indirect effects are changes of GDP compared with the hypothetical development in the absence of a natural disaster

Indirect effects can be negative ...

Negative indirect effects, e.g.:

- Loss of production due to destroyed installations
- Destroyed infrastructure
- Inflation

... and may have an impact on sovereign risk ratings

Average impact of natural catastrophes by region

However, natural catastrophes can also have positive indirect effects on economic activity

Munich RE 萋

Positive indirect effects

- Reconstruction
- Wealth creation incentives
- Investments in modern technologies
- "Creative destruction"

Natural disasters lead to production losses but can also trigger "positive" effects

Wealth gains through recovery cannot compensate for losses ...

- Empirical studies show that indirect positive effects on overall prosperity do not compensate for the indirect losses
- "Major, devastating and great" natural catastrophes lead to a statistically significant reduction in GDP of nearly 4% after five years, compared to the level of GDP without the catastrophe

... and natural catastrophes affect public finances

- In case of a natural catastrophe, a state usually has little alternative but to provide generous support to the affected regions
- A future increase in the loss potential from natural hazard events could place a strain on the national budget and jeopardize the competitive advantage of countries with low public debt

Emerging economies are particularly at risk, in part due to rising urbanisation (1/3)

Global conurbations in 1980

Emerging economies are particularly at risk, in part due to rising urbanisation (2/3)

Global conurbations in 2011

Emerging economies are particularly at risk, in part due to rising urbanisation (3/3)

Global conurbations in 2025

Many conurbations develop in regions that are exposed, for example to tropical cyclones

Settlement and industrialisation of heavily exposed regions in 2025

Protection gap still very large after NatCat events

The factors driving the trends of the past will also influence those of the future

Munich RE

After a series of benign years, the hurricane season 2017 has been quite active

- The hurricane season 2017 by now has been quite active, especially in respect to strong storms, above average
- The series of very strong major hurricanes is unusual, but not totally out of scope compared to other years
- On the long run, climate change will intensify hurricanes due to more evaporation; climate research does not see an increase in frequencies though

2017 was the fourth year since 1950 with at least 3 major hurricanes making landfall in the US

- The global market will suffer an aggregate insured loss of between \$100bn and \$125bn over recent hurricane events.
- This compares to an unindexed insured loss of \$41bn for Katrina in 2005.

Reasons why 2017 has reshaped the (re)insurance market

- Non-traditional capital has been severely impacted
- This capital will only "reload" if modelled returns increase significantly, this will involve very material increase in rate.
- A huge divergence amongst the modelling companies will lead to capital requiring additional margin.

Reasons why 2017 has reshaped the (re)insurance market

Overall, hurricane losses will have a substantial impact on reinsurance capital that is available to the market

 Analysts (e.g. JP Morgan) estimate that ~50% of insured losses will be covered by the reinsurance industry

Depending on the exact loss figures, this would be approx. USD 50-60bn

It is assumed that this would be shared among ILS (USD ~15bn) and reinsurers (USD ~35bn)

Last year's RI profits have been USD ~20bn → consequently, a reduction of 35bn means that >1.5 years of industry profits have been destroyed

Source: Total reinsurance capital by AM Best / Guy Carp & own calculation for 2017 (new)

Current hurricane losses have destroyed the reinsurance industry's profits of more than 1.5 years.

Before the occurrence of a disaster: Insurers provide the right incentives

Incentives for risk-minimising behaviour (e.g. through terms and conditions)

Incentives for entrepreneurial action and thus for growth (by covering threats to continued existence)

After the occurrence of a disaster: Insurers make funds available and thereby limit indirect losses

Fast reconstruction allows production to be resumed quickly

State and private indebtedness are limited, so no additional obstacles to growth arise

Risk consulting: Contingency Planning to guarantee after a catastrophe event

Continuity of business

- Quick assessment of the magnitude of the event
- Effective communication with the press and other stakeholders
- Optimisation and immediate activation of available resources
- Fast, precise recording and processing of claims
- Implementation of loss minimisation measures
- Devising of acceptable solutions for insureds
- Providing adequate advanced payments
- Indemnification according to the original intention of the policy

Munich RE 葦

Risk identification: Relevant loss events 2016 from natural hazards

Risk identification: All 16 years since 2001 rank among the 17 warmest since measurements began

Munich RE

Risk identification: Relevant loss events worldwide 1980-2015

Number of loss events

Accounted events have caused at least one fatality and/or produced normalized losses ≥ US\$ 100k, 300k, 1m, or 3m (depending on the assigned World Bank income group of the affected country).

Overall and insured losses (US\$ bn)

Inflation adjusted via country-specific consumer price index and consideration of exchange rate fluctuations between local currency and US\$.

Risk identification: From global/regional hazard zoning schemes to high resolution hazard information

Munich Re NATHAN Risk Suite

		Hazard Score	e Rating	1	New York, USA	
			none	low	high	0
HAMABLAS .		Earthquake				
		Volcanoes				ber
		Tsunami				10
SS CONTRACT	A Stax	Tropical cyclo	ne			1
	Page 1 and 1 and 1	Extratropical s	torm			
	Atlan	Hail				ha
	0.00	Tornado				
Marito Ty		Lightning				1.1
lacific Deenn		Wildfire				
		River flood				200 - 190
	• 🕐 📐	Flash flood				1 40 -
		Storm surge				Q, 1
	A CARLES AND A CARLES					17
PS & DATA V Hazard Maps Additional	Maps Pootprints Events	Barris Carlos Carlos	1000	<u> </u>	dun 🥄	
i A i				Estable	Osogradicas (Earl HERE, Deltoma (Munich Re	MPRINT
Earthquake Volcances	Tsutiami Tropical cyclore	Extratropical storm Hall	Tornado	Lightning	Wildfire River flood	E

- Natural hazard exposure analysis tool
- Combining client risk data with Munich Re natural hazard zoning system
- Creating risk transparency / information

Risk measurement: Risk modelling of natural catastrophes

Risk transfer: Examples of sovereign and public-private NatCat risk transfer schemes

¡Muchísimas gracias!

Munich Re Madrid Andrés Ruiz & Joachim Mathe

